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We present a study of lattice vibrations in single-wall carbon nanotubes. The study is based on a force-
constant model, where the force constants are obtained from a general invariant potential that includes up to
fourth-nearest-neighbor interactions. Applying the model, we obtain phonon dispersions and density of states
for various types of nanotubes. General low-frequency modes such as ring modes and longitudinal modes are
also identified and investigated. They are almost independent of the chiral angle but significantly dependent on
the radius. The radius dependence is used for scaling, leading to a universal density of states at low
frequencies.
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I. INTRODUCTION

Fundamental to the description of many physics proper-
ties in a solid are the energy dispersion and density of states.
In particular, the phonon energy dispersion and density of
states are useful in describing lattice vibrations and mechani-
cal and thermal transport. Because phonons couple to other
excitations or particles, they are also needed to understand
more advanced phenomena such as electron-phonon scatter-
ing and superconductivity.

There are several methods available for obtaining phonon
energy dispersions in single-wall carbon nanotubes, ranging
from the use of first-principles codes to analytical derivations
in the continuum limit. One common approach is to apply a
classical or continuum model.1–8 These models describe
long-wavelength phonons well and can concomitantly pro-
duce good dispersions in the low- and high-energy regimes.
However, if one is interested in the entire phonon disper-
sions, including the large intermediate energy regime, one
has to explicitly consider the atomic structure. Many phonon
calculations have been based on translational symmetry
along the nanotube axis and have been performed using
force-constant,3,9–14 tight-binding,15–17 and first-principles
models.18–25 While translational symmetry might be intui-
tive, it does not encompass the full symmetry of a nanotube;
consequently, large unit cells must be used, particularly for
chiral nanotubes. The numerical demand caused by the large
unit cells sometimes rules out a significant subset of nano-
tubes for consideration. The alternative is to adopt helical
and rotational symmetries,26 which shrinks the number of
atoms in unit cells or helical motifs in nanotubes down to 2.
These symmetries are increasingly being employed in
force-constant27–32 and tight-binding33–38 calculations. First-
principles calculations of phonon dispersions based on heli-
cal and rotational symmetries have yet to be performed.

In the next section, we describe a force-constant model,
similar to that of Gartstein,31 which includes up to fourth-
nearest-neighbor interactions. The model is of valence-force-
field type with force constants obtained from an invariant
potential that is constructed from internal coordinates. The
force constants obtained from this potential automatically
obey sum rules associated with rigid translations of a nano-
tube and rotations about its axis. The sum rules are expressed

in a compact form using cylindrical coordinates. We also
express analytical derivatives of the internal coordinates and
describe how we obtain the coefficients in the invariant po-
tential. Combined with helical and rotational symmetries, we
can generate energy dispersions and density of states for all
types of nanotubes in a systematic fashion.

Numerical results from our model are presented and dis-
cussed in Sec. III. Low-frequency phonon modes are charac-
terized, and their behavior is compared to predictions from
continuum theory. Nanotubes with different radii and chiral
angles are also compared, leading to the observation of a
universal scaling behavior at low frequencies of the first few
van Hove peaks in the density of states, a scaling behavior
that follows from the cylindrical geometry of the nanotubes.
A universal scaling behavior has also been observed in the
electronic density of states,39 but that behavior has a different
origin. Some concluding remarks are then made in Sec. IV.

II. THEORY

A. Nanotube structure

The structure of all single-wall carbon nanotubes can be
viewed as strips of graphene rolled up to the shape of a
cylinder. Different nanotubes are distinguished by the size of
the strips and their orientation relative to the underlying hon-
eycomb lattice. These two degrees of freedom can be related
to a set of numbers �n1 ,n2�, which are defined by the roll-up
vector

R� = n1R� 1 + n2R� 2, �1�

where R� 1�ax̂ and R� 2��a /2�x̂+ �a�3 /2�ŷ are primitive lat-
tice vectors of graphene with a�0.246 nm. The roll-up pro-
cedure is made in such a way that two points directly across
on the graphene strip separated by the roll-up vector are
mapped onto the same point on a nanotube. This mapping
defines the radius and chiral angle of that particular nano-
tube,

r =
a

2�
�n1

2 + n1n2 + n2
2,
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� = arctan� �3n2

2n1 + n2
� . �2�

Coordinates on a nanotube can easily be described using a
cylindrical coordinate system �� ,� ,z�, with the fixed radius
�=r. Given an arbitrary location of an atom �A on a cylin-
drical shell with radius r, a neighboring atom can be found at

�B=R̂z��0��T̂z�h0���A, where R̂z and T̂z are the rotation and
translation operators about and along the nanotube axis, and

�0� =
�n1 + n2��

n1
2 + n1n2 + n2

2 ,

h0� =
�n1 − n2�a

2�3�n1
2 + n1n2 + n2

2
. �3�

Using these two atoms as a basis, we can now map the re-
maining atoms in the crystal by applying the rotational and

helical symmetry operators26,40 ĈN�R̂z�2� /N� and Ŝ
�R̂z��0�T̂z�h0�, respectively. N is the greatest common divi-
sor of n1 and n2, and �0 and h0 can be taken as

�0 =
��2p1 + p2�n1 + �2p2 + p1�n2	�

n1
2 + n1n2 + n2

2 ,

h0 =
�3Na

2�n1
2 + n1n2 + n2

2
, �4�

where p1 and p2 are integers that must satisfy the linear
Diophantine equation p2n1− p1n2= �N to ensure that each
helical motif contains exactly two atoms. The unperturbed
atomic coordinates in the nanotube can now be expressed as

xlm�
�0� = ĈN

l Ŝm��, �5�

where 0	 l
N, m ranges over all integers, and �� 
A ,B�
denotes the basis atom.

The eigenvalue equations of the symmetry operators ĈN

and Ŝ are

ĈN�n
 = e2�in/N�n
, n = 0, . . . ,N − 1,

Ŝ��
 = ei���
, − � 	 � 
 � , �6�

with the eigenvectors �n
 and ��
 given by

�n
 =
1

�N
�
l=0

N−1

e−2�inl/N�l
 ,

��
 = lim
M→�

1
�2M

�
m=−M

M−1

e−i�m�m
 . �7�

It is also useful to form combined states,26,40 �n ,�
, where

�n,�
 = lim
M→�

1
�2NM

�
l,m

e−2�inl/Ne−i�m�l,m
 . �8�

As we shall see, these combined states block diagonalize the
full force-constant matrix, making phonon dispersions and

density of states in large-diameter chiral nanotubes tractable.

B. Lattice dynamics

A displacement of any atom in any direction in the nano-
tube will introduce forces. Defining the displacement of atom
lm� along the cylindrical coordinate 
 as dlm�


 �xlm�

 −xlm�


�0�,
one can construct the equations of motion

Mch

d̈lm�


 = −
1

h


�U

�dlm�

 , �9�

where Mc is the atomic mass of carbon, h= �1,� ,1� is a
cylindrical scaling factor, and U is the potential experienced
by the atom. Within the harmonic approximation, the poten-
tial can be expressed as

U =
1

2 �
ll�mm�

�
���
�

h
dlm�

 �
�

����l,l�,m,m��h�dl�m���
� , �10�

where �
�
����l , l� ,m ,m�� are interatomic force constants. In a

cylindrical coordinate system, the force constants only de-
pend on l, l�, m, and m� through the differences l− l� and
m−m�, giving

�
�
����l,l�,m,m�� = �
�

����l − l�,m − m�� . �11�

This reduction is only possible in a local coordinate
system.31 Because the equations of motion have the symme-
try of the lattice, we can use Eq. �8� to write a solution to
Eqs. �9� and �10� of the form

dlm�

 �t� =

1
�2NM

e−2�iln/Ne−im�e−i�t��

, �12�

where � is a phonon frequency and ��

 is a polarization vec-

tor. As the force-constant matrix is block diagonal in the
�n ,�
 representation, �n ,�� can be treated as parameters re-
ferring to a specific block matrix. The 6�6 block matrix is
called the dynamical matrix D, and its elements are given by

D
�
����n,�� � �

l,m
e2�iln/Neim��
�

����l,m� . �13�

Using Eqs. �10�–�13�, we can express the equations of mo-
tion �Eq. �9�	 as an infinite set of independent eigenvalue
equations

Mc��
2h
��,�


 = �
��,�

D
�
���h����,�

� , �14�

each with six solutions �. A phonon dispersion can now be
built up with branches identified by n and � and with � as
the continuous variable. We will return to the practical
implementation in a later subsection.

C. Cylindrical sum rules

In the theory of lattice dynamics, the dynamical matrix is
known to adhere to sum rules in the long-wavelength limit.
These sum rules originate from infinitesimal translational or
rotational displacements of the entire structure. As these dis-
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placements leave the relative coordinates unchanged, they
correspond to zero-frequency vibrations. In nanocrystalline
nanowires,41 including carbon nanotubes,4,5 there are four
zero-frequency modes. In addition to one longitudinal and
two transverse modes, corresponding to translations along
and perpendicular to the nanotube axis, there is one torsional
mode relating to infinitesimal rotations about the same axis.
Each type of zero-frequency mode, longitudinal, transverse,
and torsional, leads to one sum rule.

The sum rules are obtained by expressing the force on an
arbitrary atom and setting that force equal to zero for the
appropriate displacements. The force on an atom 00�, along
the cylindrical coordinate 
, can be deduced from the right-
hand side of Eq. �9�. Using Eqs. �10� and �11�, the force
takes the form

F

00� = �

l�m����

�
�
����− l�,− m��h�dl�m���

� . �15�

Turning to the longitudinal sum rule, we know that this force
must remain zero if an entire nanotube, which is otherwise in
equilibrium, is translated down its axis by an amount of �z.
As every atom is displaced the same amount, the atomic
displacements are simply dl�m���

� =dl�m���
� =0 and dl�m���

z =�z.
Substituting these displacements into Eq. �15� allows the lon-
gitudinal sum rule to be expressed as

�
lm��

�
z
����l,m� = 0. �16�

The torsional sum rule is similarly derived. If a nanotube
undertakes an azimuthal rotation of magnitude ��, no forces
will arise. Thus, the torsional sum rule can be expressed as

�
lm��

�
�
����l,m� = 0. �17�

Now, consider a transverse translation in, say, the x direction
with an amount of �x. The displacements can in this case be
written as dl�m���

� =�x cos �l�m���, h�dl�m���
� =−�x sin �l�m���,

and dl�m���
z =0, giving the transverse sum rule

�
lm��

��
�
����l,m�cos �lm�� + �
�

����l,m�sin �lm��	 = 0, �18�

where �lm��=2�l /N+m�0+��� with �A−�B=�0� from Eqs.
�3�–�5�. A translation in any other transverse direction would
lead to the same equation but with an additional unimportant
phase that could be incorporated in ���.

In addition to the three sum rules expressed above, there
is a fourth exact sum for n=0 in the limit �→0. To under-
stand the origin of this sum rule, we transform the dynamical
matrix using parallel ��� and antiparallel ��� polarizations
of the A and B sublattices. The new basis elements can be
denoted as �+, �−, �+, �−, z+, and z−. Now, consider a
twofold rotation about an axis that intersects the nanotube
axis orthogonally and a point at the center of an arbitrary
A−B bond. Such a rotation sends all �=A atoms into �=B
atoms, and vice versa. In addition to exchanging the sublat-
tices, the rotation also changes the sign of the � and z direc-
tions. We can therefore conclude that the configurations �+,

�−, and z− have eigenvalues of 1 under the rotation, while
the configurations �−, �+, and z+ have eigenvalues of −1.
This is a very useful observation because there cannot exist
any nonzero dynamical matrix elements between two states
of opposite symmetries. This is recognized through the fact
that the potential energy must be invariant with respect to the
application of the twofold rotation. We also know from Eqs.
�16� and �17�, which can simply be expressed as

���D
�
����0,0�=���D
z

����0,0�=0, that the dynamical matrix at
�n ,��= �0,0� has zero rows and columns for �+ and z+.
Moreover, �− must be an eigenstate of the dynamical matrix
with eigenvalue Mc��−

2 . Applying this solution to Eq. �14�
with the dynamical matrix given by Eq. �13� gives the final
sum rule as

�
lm

����
AA�l,m� − ���

AB�l,m�	 = Mc��−
2 . �19�

D. Construction of invariant potential using internal
coordinates

In the early days of carbon nanotube theory, based on
first-principles results,42 it became apparent that the elec-
tronic energy dispersion of the nanotubes could be obtained
from the two-dimensional graphene energy dispersion by
quantizing the direction orthogonal to the nanotube axis.42–44

The graphene sheet model for single-wall carbon nanotubes,
which has recently been reviewed,40 has been proven to be a
good approximation in the electronic case, despite its lack of
curvature effects. The graphene sheet model was also applied
to phonons.9 Unfortunately, this approach, also known as
zone folding, has been proven insufficient. To satisfy the sum
rules and to obtain the radial breathing mode, one needs to
go beyond the graphene sheet model and make calculations
based on the true atomic coordinates of a nanotube. One
drawback with the latter approach is that there are no readily
available force constants for arbitrary nanotubes. In more
recent papers,27,28,31 this problem has been circumvented by
generating invariant valence-force-field-type potentials built
from internal coordinates. By applying the true nanotube co-
ordinates to these potentials, one could obtain force constants
that automatically obey the sum rules in Eqs. �16�–�19�. In
this paper, we also apply such a potential of the type sug-
gested by Gartstein.31 The potential, which only depends on
variations of bond lengths, bond angles, and dihedral angles
between planes formed by three neighboring carbon atoms,
could be written in the form

U = �
�1

U1 + �
�2

U2 + �
�3

U3 + �
�4

U4, �20�

where �m, with m=1,2 ,3 ,4, are the sets of configurations
including up to mth-nearest-neighbor interactions. Owing to a
large redundancy, the sets only need to contain configura-
tions of the types shown in Fig. 1, including their rotated and
mirrored versions. The potential contributions can be ex-
pressed as

U1 =
1

2
C1�l��

2 ,
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U2 = C2�l���l�� + C3��l�� + �l��������

+
1

2
C4�����

2 +
1

2
C5������

2 ,

U3 = C6�l���l�� + C7��l������� + �l��������

+ C8���������� +
1

2
C9������

2 ,

U4 = C10�l���l�� + C11��l������� + �l�������� ,

C12���������� +
1

2
C13������

2 , �21�

where �l, ��, and �� are changes in bond length, bond
angle, and dihedral angle, respectively. The variations of
these internal coordinates, S=�l, ��, ��, with respect to the
Cartesian displacement vectors of the involved atoms, u� t,
can—to first order—be expressed as45

S = �
t=1

n

s�t · u� t, �22�

where n is the number of involved atoms and s�t are constant
vectors given by the geometry of the structure. If the internal
coordinate is S=�l��, then

s�� = − e���,

s�� = e���, �23�

where e��� is the equilibrium unit vector from atom � to atom
�. When the internal coordinate is the bond angle between
atoms �, �, and �, where the angle is formed at atom �, i.e.,
S=�����, we have

s�� =
e��� cos ���� − e���

l�� sin ����

,

s�� =
e����l�� − l�� cos �����

l��l�� sin ����

+
e����l�� − l�� cos �����

l��l�� sin ����

,

s�� =
e��� cos ���� − e���

l�� sin ����

, �24�

where l�� is an equilibrium bond length between atoms �
and �, and ���� is the equilibrium bond angle. The last in-
ternal coordinate Sk=������ is the dihedral angle between

the planes spanned by atoms �, �, and � and atoms �, �, and
�, and it has

s�� =
e��� � e���

l�� sin2 ����

,

s�� =
e��� � e����l�� cos ���� − l���

l��l�� sin2 ����

−
e��� � e��� cos ����

l�� sin2 ����

,

s�� =
e��� � e����l�� cos ���� − l���

l��l�� sin2 ����

−
e��� � e��� cos ����

l�� sin2 ����

,

s�� =
e��� � e���

l�� sin2 ����

. �25�

Previously, we expressed a relationship between the po-
tential energy and force constants �see Eq. �10�	. To obtain
the force constants for a given potential, one uses a reversed
expression,

�
�
����l − l�,m − m�� =

1

h
h�

�2U

�dlm�

 �dl�m���

� . �26�

The derivatives in Eq. �26� pass through Eqs. �20� and �21�
to the internal coordinates in Eq. �22�, and we get terms with
factors of the form

1

h


�S

�dlm�

 = �

t=1

n

s�t ·
1

h


�u� t

�dlm�

 . �27�

As the derivatives are zero unless atom t and lm� are the
same, in which case they are

�u� t

�dlm�
� = �cos �lm�,sin �lm�,0�T,

1

h�

�u� t

�dlm�
� = �− sin �lm�,cos �lm�,0�T,

�u� t

�dlm�
z = �0,0,1�T, �28�

the sum in Eq. �27� contains at most one term.
The coefficients in Eq. �21� can be determined from force

constants in graphene.9,46,47 In a nearest-neighbor model
�U2=U3=U4=0�, the parameter C1 is proportional to the in-
plane radial force constant �r

�1�. Including U2 gives a second-
nearest-neighbor model, where �Ci�i=1

5 are uniquely deter-
mined by the in-plane constants �r

�1�, �ti
�1�, �r

�2�, and �rt
�2� and

the out-of-plane constant �to
�1�. The nearest-neighbor in-plane

mixing term �rt
�1� must be zero by symmetry. The remaining

two constants, �ti
�2� and �to

�2�, follow from rotational invari-
ance, which in this case is �t

�1�+6�t
�2�=0. U3 introduces four

more coefficents �Ci�i=6
9 , but there are only three new third-

nearest-neighbor force constants because of symmetry ��rt
�3�

=0	. The redundancy is eliminated by enforcing the rota-
tional invariance of the in-plane tangential force constants.

α

β

β αδ αβ

δ δ

β α

γ γ γ

m=4m=3m=2m=1

FIG. 1. Configurations containing up to mth-nearest-neighbor
interactions.
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The one-to-one mapping is also present in the fourth-nearest-
neighbor model where the 13 parameters in the potential are
determined by 12 free force constants and 1 force constant
with the rotational constraint �ti

�1�+6�ti
�2�+4�ti

�3�+14�ti
�4�=0.

In addition to these 13 force constants, there are also three
implicit constants, �rt

�1�, �rt
�3�, and �to

�4�, leading to a total of 16
force constants. The coefficients of the invariant potential in
the fourth-nearest-neighbor model can be found in Table I.

To obtain the coefficients, we applied the invariant poten-
tial, �Eq. �20�	 to the graphene lattice structure. In graphene,
one can use Cartesian coordinates, in which case the deriva-
tives simplify to

�S

�dlm�

 = slm�


 . �29�

This equation can also be obtained from Eqs. �27� and �28�
in the large-diameter nanotube limit. The coefficients are re-
lated to the force constants through a linear system of equa-
tions which can be solved numerically. In the numerical cal-
culations presented in this paper, we have used coefficients
obtained from the graphene force constants given by Sam-
sonidze et al.,47 slightly modified to satisfy rotational invari-
ance.

III. RESULTS

A. Energy dispersion and phonon modes

The new force constants derived from the invariant poten-
tial presented in the last section obey the symmetry require-
ments of arbitrary nanotubes. As such, they generate dynami-
cal matrices that are consistent with the sum rules. Three of
these sum rules �Eqs. �16�–�18� followed from invariance
with respect to certain rotations and translations. Corre-
sponding to these movements are four phonon modes that

must all have a zero frequency. The locations of the zero-
frequency modes can be observed in the phonon energy dis-
persions shown in Fig. 2. Independent of the roll-up vector,
there are two acoustic zero-frequency modes in the n=0
branches at �=0, describing rigid translational motion along
and about the nanotube axis. In addition to these modes,
there are two zero-frequency modes corresponding to trans-
verse translations of the nanotube. These modes appear at
�= ��0, where �0 is given by Eq. �4� and is 35� /307,
271� /301, and 15� /76 for the �17, 1�, �11, 9�, and �12, 8�
nanotubes with dispersions shown in Fig. 2. When N=1,
these modes must, of course, also have n=0. In contrast,
when N�1, these modes are found among the n=1, N−1
branches, which is the case in Fig. 2�c�, where N=4.

The dispersions also contain other important modes, such
as the radial breathing mode, ring modes, and longitudinal
modes. The ring modes are vibrational modes with only a
minuscule dependence on the axial coordinate. They can
thus, to a good approximation, be found in the axial long-
wavelength limit. The axial wave vector k is related to �
through

� = ��0 + h0k , �30�

where � is an integer identifying a certain ring mode. Letting
k→0 gives the phases of the ring modes as �=��0. To lo-
cate the ring modes in the phonon dispersions, one might
also have to subtract an appropriate number of 2� from the
phase � and make use of the reflection properties at �. A ring
mode � is located in the � branch with the lowest frequency
at the ring mode phase. In Figs. 2�a� and 2�b�, where N=1,
all ring modes are located in the same lowest frequency
branch. When N�1, which is the case in Fig. 2�c�, the ring
modes appear in different branches with different indices n.
More precisely, a ring mode � must belong to a branch with
either index n=� �mod N� or N−n=� �mod N�, depending

TABLE I. Coefficients derived from graphene force constants
presented by Jishi et al. �Ref. 9� Grüneis et al. �Ref. 46�, and Sam-
sonidze et al. �Ref. 47�. �rt

�2� and �rt
�4� are assumed to be zero, and

�ti
�4� and �to

�4� have been recalculated to obey rotational invariance.

Coefficient
Jishi et al.

�Ref. 9�
Grüneis et al.

�Ref. 46�
Samsonidze et al.

�Ref. 47�

C1 6.0877 5.4253 5.6173

C2 1.1254 1.1115 0.8063

C3 5.6785 3.4892 3.8804

C4 0.7013 −1.8095 −3.0015

C5 0.1557 0.1800 0.1779

C6 2.3437 3.3775 3.9337

C7 0.5938 0.3808 0.1004

C8 −0.2813 −1.1175 −1.8163

C9 0.0281 −0.0112 −0.0112

C10 −1.5928 1.1502 3.3811

C11 0.2690 −0.0072 0.1032

C12 −0.5454 0.2663 0.6981

C13 0.2148 0.2325 0.2293

(a)

0

500

1000

1500

ω
[c

m
-1

]

0

500

1000

1500

ω
[c

m
-1

]

0 0.2 0.4 0.6 0.8 1
κ/π

0

500

1000

1500

ω
[c

m
-1

]

(b)

(c)

FIG. 2. Phonon dispersions of single-wall carbon nanotubes.
The nanotubes in �a�–�c� are �17,1�, �11,9�, and �12,8�, respectively.
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on the sign of � and whether an even or odd number of 2�
adjustments was required.

The dynamical matrix exhibits local time-reversal sym-
metry at the ring mode phases. This symmetry can be seen
by substituting Eq. �30� into Eq. �13�. As a consequence of
this symmetry, first-order perturbation theory predicts that
the phonon branches display local extrema at k=0. We can
see in Fig. 2 that the extrema in the low-energy branches are
generally minima. The minima corresponding to �=1 repre-
sents the zero-frequency mode describing rigid transverse
translations. Following the lowest branch in Fig. 2�a� to the
right, we see more minima evenly spaced, each representing
a ring mode. The vibrational cross sections of these modes
are shown in Fig. 3. Virtually identical ring modes can also
be found for the nanotubes with dispersions shown in Figs.
2�b� and 2�c�.

As the low-energy ring modes are almost independent of
the roll-up vector, they can be well described by continuum
models. Suzuura and Ando provided an excellent approxima-
tion of the ring modes,5 which can be expressed as

d�� � �r̂ cos ��0 − �̂ sin ��0. �31�

Using their model, we find that the phonon frequencies cor-
responding to these ring modes can be approximated as

�� � �RM
�0� �a

r
�2

��2 − 1� , �32�

where �RM
�0� �54 cm−1 has been obtained using the third pa-

rameter set in Table I. This expression is similar to one given
by Mahan.4 As we can see, the ring mode frequencies in Eq.
�32� are approximately proportional to the inverse of the
square of the radius of the nanotube. This radial dependence
is in contrast to that of the radial breathing mode, which has
a frequency approximately given by9

�RBM � �RBM
�0� �a

r
� , �33�

where �RBM
�0� �486 cm−1 for the third parameter set in Table

I. This estimate of the radial breathing mode frequency co-
efficient is in good agreement with first-principles
calculations,18,19,48 which give values between 470 and
480 cm−1. The radial breathing mode is found in the n=0, �

branch with the third lowest or first nonzero frequency at �
=0. In addition to the ring modes and the radial breathing
mode, there can be excited low-energy modes with the same
�n ,�� combination as the ring modes but with different �.
The lowest such excitation correspond to a mode ��, which
is essentially longitudinal. At low frequencies, a
longitudinal-mode frequency scales approximately linear
with axial wave vector k. For the longitudinal modes, � in
Eq. �30� is strictly zero; thus, ��vl� /h0. However, we are
interested in special quantized phases, �=���0. Because
�0 /h0 is inversely proportional to the nanotube radius, we
can approximate the frequency of the first excited longitudi-
nal modes as

��� � �LM
�0� �a

r
���, �34�

where �LM
�0� �278 cm−1 for the third parameter set in Table I.

This expression is also consistent with Mahan’s study of hol-
low cylinders.4 The next excitation describes a mode ��,
which again has little axial dependence. Unlike the ring
mode, this excited mode has a frequency that scales with the
inverse of the radius. With the exception of the two acoustic
zero-frequency modes, all modes described in this section
where � is a multiple of �0 can be identified in the density of
states.

B. Density of states

The energy dispersion of a particular nanotube provides
excellent information about that nanotube. It is, however,
common that one may only require the density of states. The
density of states per atom is deduced from the energy disper-
sion using

g��� =
1

2N
�
n,�

1

�
�

0

�

��� − ���n,��	d� . �35�

The densities of states of three nanotubes with the same ra-
dius but different chiral angles are shown in Fig. 4�a�. Their
overall structure is similar to that of graphene, but unlike
graphene the nanotube density of states exhibits one-
dimensional van Hove singularities. These singularities oc-
cur at energies where there is an extremum in the energy
dispersion. The van Hove singularities can be seen in more
detail in Fig. 4�b�, which shows a magnification of the low-
energy regime. Each singularity has been labeled with a cor-
responding mode. Because the low-energy modes mostly
stem from the cylindrical shape of the nanotubes, the same
labels apply to all three nanotubes. Also note that Fig. 4�b�
has a singularity at �=0, which is a consequence of the
parabolic energy dependence of the flexure modes in the
long-wavelength limit.

The chiral angle has little effect on the density of states at
most frequencies �cf. Fig. 4�a�	 and, in particular, at the small
frequencies displayed in Fig. 4�b�. This is not surprising as
phonon dispersions are well described at low energy by con-
tinuum models that do not explicitly consider the lattice.
However, at first inspection, it is not obvious that the six-
branch dispersion of a �23,4� or a �17,12� nanotube would

λ = 1 λ = 2 λ = 3

λ = 4 λ = 5 λ = 6

FIG. 3. Ring modes of a �17,1� nanotube. The ring modes ob-
tained using the force-constant approach described in this paper are
visually indistinguishable �not shown� from those obtained by Su-
zuura and Ando using a continuum model �Ref. 5�.
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produce virtually identical densities of states as the 42-
branch dispersion of a �21,7� nanotube. On the other hand,
the branches in dispersions of nanotubes with smaller N ex-
hibit more oscillations, leading to more van Hove singulari-
ties per branch. These oscillations fully compensate for the
additional bands in nanotubes with larger N. While the con-
tinuum models are accurate at low energy, they might fail at
high energy, as lattice effects gradually become more impor-
tant. Despite that, our force-constant approach shows a re-
markable similarity between the densities of states of the
three nanotubes even at higher energies. This similarity
might be related to the in-plane isotropic nature of the
graphene sheet.

To investigate the radial dependence on the density of
states for a fixed chiral angle, we have chosen three armchair
nanotubes. The density of states of these nanotubes can be
seen in Fig. 5. Seen over the entire spectrum, the densities of
states of the different nanotubes might appear similar. This
similarity comes from the close relationship between the
structures of carbon nanotubes and graphene sheets, which
share the overall shape of the densities of states. However, at
closer inspection, one notices that the densities of states are
not as similar as in the case when the radius was fixed �Fig.
4�a�	. The differences are more easily observed in the low-
energy regime shown in Fig. 5�b�. The van Hove singulari-
ties corresponding to the low-energy modes occur at differ-
ent energies in the different nanotubes, with the exception of
the zero-frequency flexure modes.

The peak coincidence at low energies can be recovered by
multiplying the energy with dimensionless factors containing
the radius or radius squared. In Fig. 6�a�, the peaks from the
radial breathing modes and the excited modes of different

nanotubes overlap. The overlap confirms the approximations
in Eqs. �33� and �34�. Similarly, the approximation in Eq.
�32� can be verified by Fig. 6�b�. Note that the densities of
states in both figures have been scaled by a dimensionless
radius to conserve the atomic density of states in a given

0 500 1000 1500
ω [cm

-1
]

0

0.005

0.01

0.015

g(
ω

)
[c

m
]

(a)
(23,4)
(21,7)
(17,12)

0 50 100 150 200
ω [cm

-1
]

0

0.001

0.002

0.003

0.004

0.005

g(
ω

)
[c

m
]

(b)

λ=2 λ=3

λ=4

λ’=1

λ=5

RBM

λ=6

λ’=2
λ’’=1

λ=7

λ’=3

(23,4)
(21,7)
(17,12)

FIG. 4. Density of states per atom of three nanotubes with the
same radius but different chiral angles. �a� shows the entire phonon
density of states. A low-frequency magnification of the same dis-
persion is shown in �b�. The van Hove singularities in �b� corre-
spond to the radial breathing mode �RBM�, ring modes �, longitu-
dinal modes ��, and higher-frequency modes ��.

0 500 1000 1500
ω [cm

-1
]

0

0.005

0.01

0.015

g(
ω

)
[c

m
]

(a)
(8,8)
(12,12)
(16,16)

0 50 100 150 200
ω [cm

-1
]

0

0.001

0.002

0.003

0.004

0.005

g(
ω

)
[c

m
]

(b)
(8,8)
(12,12)
(16,16)

FIG. 5. Density of states per atom of three nanotubes with the
same chiral angle. �a� shows the entire phonon density of states and
�b� shows a magnification of the low-frequency region.
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FIG. 6. Scaled density of states per atom. By scaling the density
of states and frequency with radius or radius squared, van Hove
singularities from arbitrary nanotubes representing a certain mode
could be mapped onto each other to a very good approximation. �a�
illustrates how peaks from modes with frequencies with inverse
radius dependence coincide for three different nanotubes. �b� Low-
frequency ring modes can be scaled to produce a low-frequency
universal density of states.
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mode. The total number of states per atom is independent of
the radius. However, the total number of modes is propor-
tional to the radius. Consequently, the first few peaks in Fig.
6�b� are, to a good degree, independent of the roll-up vector.
In other words, we have a universal density of states for the
first few van Hove peaks. This universal behavior holds for
nanotubes with diameters equal to or larger than 1 nm. For
nanotubes narrower than 1 nm, the universal behavior even-
tually breaks down as the ring modes are pushed to higher
frequencies.

IV. CONCLUSIONS

Through the use of invariant potentials, we obtained pho-
non dispersion relations which obey the necessary symme-
tries required by the structure. Using those relations, we ana-
lyzed some modes with high symmetry, particularly ring
modes and longitudinal modes, which appear in the low-
frequency regime of the density of states. We then used the
analyzed modes to label and scale the density of states. This

effort could be helpful when trying to identify van Hove
singularities in nanotubes where the roll-up vector is un-
known. The location of the peaks could also be used to find
radii of nanotubes. Attempting to obtain the exact roll-up
vector, however, is more challenging, as the studied peaks
have little dependence on the chiral angle. Dependence on
the chiral angle requires wavelengths of atomic scale. The
small chiral-angle dependence was therefore expected in the
low-frequency regime where wavelengths are mostly on the
scale of nanotube radius. In other words, the search for chiral
angle dependence should be more promising in a higher-
frequency regime, where lattice effects are more pronounced.
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